BLACK AL

EasySMF:JE Installation and User Guide

Version 2.0

© 2023 Black Hill Software

EasySMF:JE Installation and User Guide

© 2023 Black Hill Software

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written
permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or
from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable
for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this
document.

Contents 3

Table of Contents

Introduction 4
Processing SMF Data with Java............cciiimiiiiiiiicir s s e s e e na e 4
EQSYSMF:JE CONCEPLS....ccuiiieeiiiiiiiieiireiirmssreas s s s rsmsssrsssrnassnassssnsssemssssnssssnnssrnnsssnnsssnnnnnns 4
Installation on z/OS 7
Installation on other platforms 10
Creating your own reports 12
EasySMF:JE Key 13
Reading SMF data 14
Reading SMF data on z/OS..........c.uuiiiiiiiiii i e 14
Reading SMF data on other platforms..........c.cooeiiiiiiic e 15
Reading SMF data from a Stream............c.civiiiiiiiiii s rr s e e s s remas 15
Selecting Record Types for Processing.........ccoueeuuiininiimmimmssrsssss s 15
EasySMF:JE Samples 17
Working with SMF records 18
Data Types 20
SMF Record Notes 21
CICS .. e 21
SLF4J Message Logging 23
Appendices 24
Appendix A - 3rd Party LICENSEeS.........c.ciiieiiiieiiiii s rsessrss s s s s s s ra s ssmss s rn s senansnen 24

SLFAJ oottt ettt ettt E et E e A e A e S e E e e S e A S S e e A e A e A e A eE A eE b eE et ee b et et et et et st eeas 24

(T N 24

APACNE COMMONS CLI ...cceiiiiiiiiiee e ieees e e e e e e e e s s e s s e e s seas s s smas s e masa s eanssssanssssennsssennsssnansssrnnnsssennnnsennnnsrnnn 24
Index 25

© 2023 Black Hill Software

EasySMF:JE Installation and User Guide

Introduction

EasySMF:JE provides a powerful and intuitive API for processing SMF data.

EasySMF:JE runs on z/OS and other Java platforms, and allows you to use the advanced functions of
Java for your SMF reporting. Itis 100% Java code so is zIIP eligible on z/OS.

Processing SMF Data with Java

Java is a highly optimized language which runs very fast on z/OS. The object-oriented structure of Java
classes are very well suited for representing SMF records and sections. This makes Java an excellent
choice for processing SMF data.

Java will automatically make use of features like SIMD on the latest zZ/OS systems to increase the speed
of the Java code.

However, the biggest improvements in speed don't come from writing faster code, they come from using
more efficient algorithms. This is where Java has a huge advantage over more traditional languages
used for SMF processing.

The Java Collections classes provide the foundation for more efficient algorithms. In particular, the
java.util.HashMap<> class allows very efficient processing. Sorting input data is not necessary, which

can be a big overhead for SMF reporting. Many of the EasySMF samples demonstrate use the
HashMap to organize the data for a report.

EasySMF:JE Concepts

EasySMF:JE is designed to provide a consistent API across different record types. Names are based
on the names of the SMF fields, using Java naming conventions e.g. SMF30CPT becomes smf30cpt().

You will need to refer to the various product documentation for the meanings of the SMF fields.

Reading Records
The com.blackhillsoftware.SmfRecordReader class reads records from a SMF file or DDNAME.

On z/OS you will normally read from a SMF dump file allocated to a DDNAME in your job using the
JZOS Batch Launcher.

SmfRecordReader can also read from files on Linux’'Windows or z/OS OMVS. These files must have
been transferred as BINARY, and include the record descriptor words (RDWs) which contain the

record length information. SMFRecordReader can also read VBS files transferred with RECFM=U, i.e.
for use with other SMF processing tools on distributed platforms.

Reading Sections from a Record

Records and sections provide methods to extract sections and subsections.

e Subsection and method names are based on the description in the SMF documentation, e.g.
com.blackhillsoftware.smf.smf30.PerformanceSection.

© 2023 Black Hill Software

Introduction 5

Where multiple sections may be present the sections are returned as a List<SectionType>. This
applies to most sections described by triplets (offset, length, count) as well as other instances where
there may be multiple sections, e.g. chained using pointers to the next section. This means that you
do not have to deal with the logic to extract the sections yourself.

o |f there are no sections present, e.g. triplets with a count of 0, an empty List<> is returned. This
allows you to use iterators to access the sections without explicitly testing whether any are present - if
there are none you will simply iterate 0 times.

o If it is documented that there will always be exactly one section, the method will return that section.

o |f there can be one or 0 sections a List<SectionType> containing 1 or 0 sections will be returned.
There may also be an alternate method which returns the section if present, or null.

Examples

SMF type 30 records always have 1 Identification section so the Smf30Record class has a method
called identificationSection() that returns a class called IdentificationSection.

IdentificationSection ident = record.identificationSection();

SMF type 30 records can have 1 or 0 Completion sections so the completionSections() method
returns a List<CompletionSection> that will have 0 or 1 entry.

List<CompletionSection> comp = record.completionSections();
It is documented that there can be no more than one completion section, so there is also a

completionSection() method which provides a single completion section. It returns null if there is no
completion section present.

CompletionSection comp = record.completionSection(); // might return null

SMF type 30 records can have multiple EXCP sections so the excpSections() method returns a
List<ExcpSection> that will have zreo or more entries.

List<ExcpSection> excp = record.excpSections();
Data Types
SMF data types are converted to Java data types as follows:

¢ 1, 2 and 3 byte integer values are converted to the Java int datatype (32 bits). Java integers are
signed, so 32 bits is too small for a 4 byte/32 bit unsigned value.

¢ 4 byte/32 bit unsigned integer values are converted to a Java long (64 bits).

¢ 8 byte/64 bit unsigned integer values are available as both long and Biginteger values. The long
data type may provide better performance if the value will not exceed the maximum 64 bit signed
value. The API will throw an exception if the value is too large for a long. If this is possible, use the
Biglnteger value.

¢ Integers greater than 8 bytes are converted to Bigintegers.

¢ Floating point values are converted to Java doubles.

Dates and Times

© 2023 Black Hill Software

EasySMF:JE Installation and User Guide

Dates and times are represented using java.time classes. The java.time classes provide nanosecond
resolution which covers most of the date and time values in SMF data. The unconverted, raw values for
each field are also available if required.

o Times representing a duration e.g. CPU time, connect time etc. are converted to java.time.Duration
values. They are also available as a double value in seconds, which is likely to be more convenient
with better performance for arithmetic. E.g. The SMF 30 ProcessorAccountingSection provides the
SMF30CPT value as a Duration from smf30cpt() and a double value in seconds in
smf30cptSeconds().

e Dates and times of day are represented as java.time classes - LocalDate, LocalTime,
LocalDateTime, ZonedDateTime depending on which components of the time are included - date,
time, timezone etc. The different classes help avoid errors caused by comparing fields which are not
equivalent e.g. ZonedDateTime and LocalDateTime.

o Times representing offsets from GMT are returned as java.time.ZoneOffset. This can be combined
with a LocalDateTime to create a ZonedDateTime.

e STCK values are returned as a ZonedDateTime. The actual STCK value is also available as a
Biglnteger if the full precision of STCK is required.

Incorrect Data Types

If you find fields where the data type is incorrect (i.e. doesn't follow these principles), please report it to
support@blackhillsoftware.com. Fixing it is likely to be a "breaking change" and require changes and/or
recompilation for any programs using that field, so it is better to report it and get it fixed than code
around it and have someone else report it later.

© 2023 Black Hill Software

mailto:support@blackhillsoftware.com

Installation on z/OS 7

Installation on z/OS

Prerequisites

Java 8 or higher

EasySMF:JE runs under Java 8 or higher.

JZ0OS Batch Launcher

EasySMF:JE can run under the OMVS shell, BPXBATCH or using the JZOS Batch Launcher. The
JZOS Batch Launcher is recommended because it allows you to use DD names in JCL as for any other
z/OS batch job.

Install the JZOS Batch launcher according to instructions in the IBM JZOS Toolkit Installation and
Users Guide.

This consists of the following steps:

1. Copy the JVMLDM80 and JVMLDMB86 load modules to a PDSE.
2. Customize the JVMPRCB80 (32 bit) and JVMPRC86 (64 bit) JCL procedures.

Copy Installation

EasySMF:JE consists of a single jar file plus dependencies.

The easiest way to use EasySMF:JE is to build programs on a Windows or Linux platform using Apache
Maven and transfer the resulting jar files to z/OS. Sample projects to build reports using EasySMF:JE
are available on Github:

https://github.com/BlackHillSoftware/easysmf-samples

The sample projects copy dependencies including the EasySMF:JE jar to the target/1ib directory.
Transfer the build output from target/*.jar and target/1ib/*.jar to corresponding directories on
z/OS using binary transfer options. JCL to run the programs is provided in the Github repository:
https://github.com/BlackHillSoftware/easysmf-samples/tree/main/JCL

z/OS Installation

EasySMF:JE version 2 is supplied as a pax archive containing the EasySMF:JE jar, samples, and
dependencies. Source to the sample programs and JCL is also provided.

1. Transfer the pax archive to a direcory on z/OS using binary transfer options.
2. Select a location to install EasySMF:JE.

For testing you can install into your home directory. The archive will be extracted into a subdirectory
named easysmf-je-v.r.m where v.r.m is the version information.

Several subdirectories and files will be created under the easysmf-je-v.r.m directory:

jar Contains the EasySMF and related jar files required to run
EasySMF.

samples EasySMF sample reports

samples/jar Source code for the EasySMF sample reports

samples/jar/lib Additional dependencies for the sample programs

© 2023 Black Hill Software

https://maven.apache.org/
https://maven.apache.org/
https://github.com/BlackHillSoftware/easysmf-samples
https://github.com/BlackHillSoftware/easysmf-samples/tree/main/JCL

EasySMF:JE Installation and User Guide

samples/JCL JCL to compile and run Java programs

samples/scripts Scripts and Windows batch files to compile and run Java
programs

samples/easysmf-skeleton A skeleton Maven project to build a reporting program

using EasySMF:JE. Copy and modify this skeleton to
create your own programs.

samples/sample-reports A selection of sample reports

samples/smf-de-dup A program to remove duplicate records from SMF data.
samples/smf-report-dups A program to analyze duplicate records in SMF data.
samples/smf2json Sample programs to produce JSON from SMF data
samples/smf2json-skeleton A skeleton Maven project to convert SMF data to JSON

using EasySMF:JE. Copy and modify this skeleton to
create your own programs.

samples/tutorial The EasySMF:JE tutorial from
https://qgithub.com/BlackHillSoftware/easy smf-
samples/tree/main/tutorial

The samples/ directory is a copy of the EasySMF Samples project on Github:
https://github.com/BlackHillSoftware/easysmf-samples

3. Extract the pax archive:
pax -rvf easysmf-je-v.r.m.pax

4. Install the license or temporary key.

On z/OS, you can use DD name EZSMFKEY or the EASYSMFKEY environment variable to indicate
the location of the EasySMF:JE license key.

EZSMFKEY DD name:

//EZSMFKEY DD DISP=SHR, DSN=YOUR.DATASET (EZSMFK)

If you use the EASYSMFKEY environment variable the key itself can be installed in a file or z/OS
dataset. zZ/OS datasets are indicated by names beginning with //.

Quotes and brackets in the dataset name need to be escaped using backslash characters

The following example shows how to point the EASYSMFKEY environment variable to a member of a
PDS.

//STDENV DD *
export EASYSMFKEY=//\'YOUR.DATASET\ (EZSMFK\)\'

The EASYSMFKEY environment variable could also be added to the standard environment
via /etc/profile Or .profile.

See topic EasySMF:JE Key for more information.

5. IVP
JCL from samples/JCL/RUNJZ0OS.3cl can be used to verify the installation.
Update the jobname and EZSMFDIR, JZOSLIB, SMFDATA symbols as required. Submit the job and
check it runs successfully.

Common Problems

JVMJZBL2008E Could not find or load class: com.smfreports.json.Smf30RecordToJdson

© 2023 Black Hill Software

https://github.com/BlackHillSoftware/easysmf-samples/tree/main/tutorial
https://github.com/BlackHillSoftware/easysmf-samples/tree/main/tutorial
https://github.com/BlackHillSoftware/easysmf-samples

Installation on z/OS 9

Double check the directories used for the class path in the system symbols. If there is an error in
the name the non-existent directory is added to the CLASSPATH without any error message, and
Java fails when it tries to locate the classes.

Java Class Path

The following jars are distributed with EasySMF and need to be included in the class path for your own
EasySMF reporting programs:

easysmf-je-v.r.m.Jjar

slf4j-api-v.r.m.jar - Simple Logging Facade for Java. This allows the destination for EasySMF
messages to be customized.

slf4j-simple-v.r.m.jar - Directs EasySMF messages to stderr. This jar can be replaced with an
alternative SLF4J binding to customize logging behavior. See SLF4J Message Logging.

© 2023 Black Hill Software

10

EasySMF:JE Installation and User Guide

Installation on other platforms

Prerequisites

Java 8 or higher

EasySMF:JE runs under Java 8 or higher.

Apache Maven

Apache Maven is recommended to build the projects and manage dependencies.
https://maven.apache.org/

Building using Apache Maven

1.

Clone the EasySMF Samples project from Github, or download and extract as a zip file
git clone https://github.com/BlackHillSoftware/easysmf-samples.git

or
download from https://github.com/BlackHillSoftware/easysmf-samples/archive/refs/heads/main.zip

Build the samples e.g.

cd easysmf-samples/sample-reports

mvn clean package

The first time you run Maven it needs to download all the plugins used in the build, plus the project
dependencies. This can be a lengthy list of downloads. These are cached locally on your machine
so they do not have to be downloaded for subsequent builds.

The output jar file is written to the target subdirectory. The supplied Maven pom.xml uses the Maven
Dependency Plugin to copy dependencies to the target/1ib directory.

Install the license or temporary key.

The EASYSMFKEY environment variable points to the file containing the EasySMF:JE license key.
The key needs to be saved into a file and the EASYSMFKEY environment variable created to point to
the fie.

See topic EasySMF:JE Key for more information.

Run the program.

Sample unix scripts and Windows batch files are provided in the samples scripts subdirectory.

Set the TARGET variable to the target directory with the output from the build.

Set the EASYSMFKEY variable to point to the file with the temporary or permanent key.

The EASYSMFLOCATION variable is not important for a Maven build, because the dependencies including EasyS

Run on z/OS if required.
a. Copy the jar files from the target and target/1ib directories to z/OS using binary transfer options.
b. JCL to run on z/CS is in the samples JcL subdirectory.

See the Installation on z/OS topic for information on running under the JZOS Batch Launcher.

Zip or tar.gz Archive

EasySMF:JE is also available as zip and tar.gz archives for installation on non-z/OS systems. The
content is the same as the pax archive included in the z/OS installation.

1.

Extract the files from the zip or tar.gz archive.

© 2023 Black Hill Software

https://maven.apache.org/
https://github.com/BlackHillSoftware/easysmf-samples/archive/refs/heads/main.zip

Installation on other platforms 1

2. Install the license or temporary key.
The EASYSMFKEY environment variable points to the file containing the EasySMF:JE license key.
The key needs to be saved into a file and the EASYSMFKEY environment variable created to point to
the file.
See topic EasySMF:JE Key for more information.

Compile
Compile scripts are located in the samples/scripts subdirectory.

Update the scripts:
1. Set the EASYSMFLOCATION variable to the location of the extracted files.
2. Set the TARGET variable to the output directory for the compiled class files.

3. Run the compile script e.g.
./compilesample.sh sample-reports/src/main/java/com/smfreports/RecordCount. java

Run
Run scripts are also located in the samples/scripts subdirectory.

Set the EASYSMFLOCATION variable to the location of the extracted files.

Set the TARGET variable to the output directory from the compilation step.

Set the EASYSMFKEY variable to point to the file with the temporary or permanent key.
Run the script e.g.

./runsample.sh com.smfreports.RecordCount SMF.DATA

PN~

Java Class Path

The following jars are distributed with EasySMF and need to be included in the class path for your own
EasySMF reporting programs:

easysmf-je-v.r.m.Jjar

slf4j-api-v.r.m.jar - Simple Logging Facade for Java. This allows the destination for EasySMF
messages to be customized.

slf4j-simple-v.r.m.jar - Directs EasySMF messages to stderr. This jar can be replaced with an
alternative SLF4J binding to customize logging behavior. See SLF4J Message Logging.

© 2023 Black Hill Software

EasySMF:JE Installation and User Guide

Creating your own reports

Skeleton projects are provided with the EasySMF:JE samples as a basis for your own reporting
projects.

o easysmf-skeleton is a simple project to build an EasySMF:JE reporting program
¢ smf2json-skeleton is a project to build a program to convert SMF data to JSON format using the
EasySMF-JSON functions.

Start by editing the project pom. xm1 file and changing the groupld, artifactld and name elements as
required.

Use an IDE such as Eclipse or Visual Studio Code and import the Maven project into the Workspace.
Make modifications as required.

Change the mainClass element in the pom.xml file to reflect your main class name.

Build the project using maven. Change to the directory containing pom.xml and enter the command:
mvn clean package

The skeleton projects use the maven-dependency-plugin to copy the project dependencies to the
target/1ib output directory. The run time class path needs to include the jars from the target and
target/1lib directories.

If you create a runnable jar (using the mainClass element in the pom) the class path is set at build time,

and the dependencies must be in the directory specified by the pom classpathPrefix i.e. . /1ib in the
distributed samples.

© 2023 Black Hill Software

EasySMF:JE Key 13

EasySMF:JE Key

The EasySMF:JE key is a text file that looks like:

**License:

MQOKMjAXNSOwOSOWNAOKVGVtcGIyYXIS5IEt1eQOK

**Sig:
bBVA9pCvG1l45BQrvaser65geM8zalxJsAt5XIVtwpB3Ld4TXB4LzaCFNARgXtQOR
IGAg+KhMLyaMM66gFMsFQAuE1ASAK6wWi2 7 9hBBm/YOBGCWAgbw9iWzeApEDIVaQ
LbFkhc6WNyv2/27VZXJI/nkAyUBzX9uyVEKb4Vc+oX0M=

**End

Include all lines, including the **License and **End lines. The format of the key is designed so that it
can be easily pasted into a 3270 emulator session.

EasySMF locates the key via a DD name on z/OS, or using the EASYSMFKEY environment variable on
z/OS or other platforms.

In a z/OS batch job you can simply add a DD in the JCL.:

//EZSMFKEY DD *

**License:

MQOKMJjAXNSOWOSOWNAOKVGVLcGIOyYXISIEt1eQOK

**Sig:
bBVA9pCvGl45BQrvaser65geM8zalxJsAt5XIVtwpB3Ld4TXB4LzaCFNARgXtQOR
IGAg+KhMLyaMM66gFMsFQAuE1ASAK6wWIW12Z9hBBm/YOBqCW4gbw9iWzeApEO9VaQ
LbFkhc6WNyv2/27VZXJ/nkAyUBzX9uyVEKb4Vc+oX0M=

**End

/*

In other environments, including z/OS unix, the key is located using the EASYSMFKEY environment
variable.

Save the key to a file, and set the environment variable to the name of the file.
On Windows:
set "EASYSMFKEY=C:\path to your\key.txt"

or got to Control Panel -> Edit the System Environment Variables and add the variable.

On unix:
export EASYSMFKEY="/etc/easysmf/easysmfkey.txt"

30 Day Trial

To obtain a key for a 30 day trial of EasySMF:JE, visit:
https://www.blackhillsoftware.com/30-day-trial/

© 2023 Black Hill Software

https://www.blackhillsoftware.com/30-day-trial/

14 EasySMF:JE Installation and User Guide

Reading SMF data

Reading SMF data on z/OS

EasySMF:JE uses the SmfRecordReader class to read data from RECFM=VB or RECFM=VBS SMF
dump datasets.

The JZOS Batch launcher allows you to run Java programs with access to DD statements defined in
JCL. Allocate the SMF dump dataset to a DDNAME in your job, and open and read it using the
SmfRecordReader class.

The SmfRecordReader class implements the Iterable<SmfRecord> and Closeable interfaces so you
can iterate to read each record, and use "try with resources" to automatically close the file.

try (SmfRecordReader reader = SmfRecordReader.fromDD("INPUT"))

{
for (SmfRecord record : reader)
{
// Process each record here
}
}

// reader is automatically closed when exiting the try block
SmfRecordReader can also access DD names and MVS datasets using
SmfRecordReader.fromName(...). This means programs can be run on z/OS or other platforms simply
by passing names in different formats to the program.

try (SmfRecordReader reader = SmfRecordReader.fromName("//DD:INPUT"))

{
for (SmfRecord record : reader)
{
// Process each record here
}
}

or to access a z/OS dataset by name without preallocating a DD:

try (SmfRecordReader reader = SmfRecordReader.fromName("//'MVS.DATASET.NAME'"))

{
for (SmfRecord record : reader)
{
// Process each record here
}
}

If you provide the dataset name or DDNAME in the program arguments
SmfRecordReader.fromName(...) allows you to use the same code to read from a dataset name or
DDNAME on z/OS, or a file name on other platforms.

try (SmfRecordReader reader = SmfRecordReader.fromName(args[0]))
{

for (SmfRecord record : reader)

{

© 2023 Black Hill Software

Reading SMF data 15

// Process each record here

}
Reading SMF data on other platforms

Reading on other platforms is very similar to reading on z/OS, except that the SmfRecordReader reads
from a file or some other form of InputStream.

The stream data must include the record descriptor words (RDWs) so that the record lengths can be
determined. Optionally it can include the block descriptor word (BDW) i.e. if a VB or VBS file was
transferred as RECFM=U.

This example reads from a file, where the filename is passed as an argument to the program.

try (SmfRecordReader reader =
SmfRecordReader . fromName (args[0]))

{

for (SmfRecord record : reader)

{
}

// Process each record here

}

SmfRecordReader.fromName(...) opens a FilelnputStream using the argument as the name of the SMF
data file.

Reading SMF data from a stream

SMF data can also be read from an InputStream. This allows a variety of sources, e.g. a TCP/IP
network stream, or passing data through a stream to compress and decompress data.

The stream data must include the record descriptor words (RDWs) so that the record lengths can be
determined.

This example reads from a FilelnputStream created from a file name passed as an argument to the
program.

try (SmfRecordReader reader =
SmfRecordReader. fromStream(new FileInputStream(args[0])))

{
for (SmfRecord record : reader)
{
// Process each record here
}
}

Selecting Record Types for Processing
The SmfRecordReader class can filter records by type and subtype.
Use the include(...) method to specify the types and subtypes required.

E.g. to process only type 30 records:

© 2023 Black Hill Software

16 EasySMF:JE Installation and User Guide

try (SmfRecordReader reader =
SmfRecordReader. fromName (inputFile)
.include(390))

{

}
To process only type 30 subtype 5 records:

// Process type 30 records here

try (SmfRecordReader reader =
SmfRecordReader. fromName (inputFile)
.include(30, 5))

{
}

The include() method returns the SmfRecordReader so it can be chained as many times as required. To
process only type 30 subtypes 2 and 3 records:

// Process type 30 subtype 5 records here

try (SmfRecordReader reader =
SmfRecordReader. fromName (inputFile)
.include(30, 2)
.include(30, 3))
{

}

If no include(...) is specified, all record types are included.

// Process type 30 subtypes 2 and 3 records here

© 2023 Black Hill Software

EasySMF:JE Samples

EasySMF:JE Samples

Sample reports, scripts and JCL are available on Github:

https://qgithub.com/BlackHillSoftware/easysmf-samples

Samples include:

A tutorial to introduce and demonstrate various EasySMF:JE concepts
Programs to report and remove duplicate SMF data

Programs to convert various SMF records to JSON format

Skeleton projects which you can copy to create your own EasySMF:JE projects
JCL to run on z/OS.

A copy of the samples from Github is included in the distributed pax and zip files.

17

© 2023 Black Hill Software

https://github.com/BlackHillSoftware/easysmf-samples

18

EasySMF:JE Installation and User Guide

Working with SMF records

The SMFRecordReader implements the Iterable<SmfRecord> interface.

This means that it can be the target of a for-each loop operating on SmfRecords. To read SMF records
from the reader:

try (SmfRecordReader reader =
SmfRecordReader. fromName (args[0]))

{
for (SmfRecord record : reader)
{
// Process each record here
}
}

The SmfRecord class is the base class for all SMF record types. It implements a number of methods
common to all SMF record types, e.g. recordType().

Typically you will need to transform the SmfRecord into a specialized record type, e.g. Smf30Record to
access the data. The record classes have a static from method to create a the specialized record from
another record.

Record Sections

After creating the specialized record you can use the record methods to get the sections and data
fields.

Single Sections vs. List<>

Some sections e.g the SMF 30 IdentificationSection are always present and there are never more than
one in a record. These sections are accessed using a method that returns a single section.

Other sections e.g. SMF 30 ExcpSection can occur multiple times in a record. These sections are
accessed using a method returning a list of 0 or more sections, depending how many were present in
the record.

There are some sections that never occur more than once, but are not always present. These can be
accessed using a method returning a list of 0 or 1 sections, or using a method returning the single
section or null.

The reason both methods exist is that these sections are located in the record by SMF "triplets" with a
count field specifying how many sections are present. The List<> method is provided for consistency
with other sections using triplets. In cases where it is documented that there can only be 1 or 0
sections, a method is also provided to return the single section.

Which you choose depends on personal preference.

E.g. the Smf30Record.processorAccountingSections() method returns a list containing either 1 or 0
ProcessorAccountingSections depending on whether the section is present in the record:

for (SmfRecord record : reader)

© 2023 Black Hill Software

Working with SMF records 19

{
Smf30Record r30 = Smf3@Record.from(record);
for (ProcessorAccountingSection procAcct

: r30.processorAccountingSections())

{
Duration cpuTime = procAcct.smf30cpt()
.plus(procAcct.smf30cps());
if (cpuTime.getSeconds() >= 60)
{

System.out.format("%-23s %-8s %12s%n",
r30.smfDateTime(),
r30.identificationSection().smf30jbn(),
cpuTime);

}
}
}

In this case there is also a processorAccountingSection() method which returns the
ProcessorAccountingSection if present, or null. An alternate way to process this particular section is:

for (SmfRecord record : reader)

{
Smf30Record r30 = Smf3@Record.from(record);
ProcessorAccountingSection procAcct = r30.processorAccountingSection();
if (procAcct != null)
{
}
}

Data Fields

Records and Sections provide methods to access their data fields.

E.g. the SMF 30 loActivitySection provides smf30tex() to get the value of the SMF30TEX field with the
job or step EXCP count.

© 2023 Black Hill Software

20

EasySMF:JE Installation and User Guide

Data Types

SMF data types are converted to Java data types as follows:

¢ 1, 2 and 3 byte integer values are converted to the Java int datatype (32 bits). Java integers are
signed, so 32 bits is too small for a 4 byte/32 bit unsigned value.

¢ 4 byte/32 bit unsigned integer values are converted to a Java long (64 bits).

¢ 8 byte/64 bit unsigned integer values are available as long and Biglnteger values. The long data
type may provide better performance if the value will not exceed the maximum 64 bit signed value. The
API will throw an exception if the value is too large for a long. If this is possible, use the Biginteger
value.

¢ Integers greater than 8 bytes are converted to Bigintegers.

¢ Floating point values are converted to Java doubles.

Dates and Times

EasySMF:JE converts the various SMF dates and times to java.time classes. This allows you to use
date and time values without doing your own conversions or knowing the units of each field.

Java.time has has nanosecond precision, which is enough to represent most SMF fields. The raw
unconverted SMF values are also available for all time based fields if required.

The java.time classes also provide facilities to determine the day of the week, timezone rules for daylight
saving etc.

Different types of date and time are represented by different classes. This avoids errors that can occur
from using incompatible types, e.g. comparing local times and GMT/UTC times. To do these
comparisons you need to explicitly convert between types, for example you can convert from a
LocalDate to a LocalDateTime using the LocalDate.atTime(LocalTime) method.

Likewise, you can convert from LocalDateTimes to ZonedDateTimes by applying a ZoneOffset or
Zoneld. If you have systems in different time zones you could apply the appropriate Zoneld for each
system to synchronize SMF reports, or even report using a different time zone.

Common java.time classes used in EasySMF:JE are:

Duration - A length of time, e.g. CPU time or connect time for a job.
LocalDate - A date without a time and with unknown timezone.
LocalTime - A time of day, without any date information.
LocalDateTime - Incudes both time and date, with unknown time zone.

ZonedDateTime - Includes date, time and time zone information. Typically in EasySMF these are
from SMF fields expressed in GMT time. If your clock is not set to GMT these will be incorrect.

o ZoneOffset - An offset from GMT time. The system time zone information is stored in some records.

Durations are also converted to double precision floating point values in seconds to simplify
calculations.

© 2023 Black Hill Software

SMF Record Notes 21

SMF Record Notes

CICS

CICS Record Compression

CICS can compress SMF records as they are created using CSRCESRV data compression.
Compressed CICS records will be decompressed when the Smf110Record is constructed.

CICS Monitoring Facility Records

Accessing data from CICS monitoring facility records is slightly different to other SMF records because
the data needs to be accessed using a Dictionary.

Dictionary records are handled automatically, however you cannot access the data from a record
before a related dictionary record has been seen. You can check whether a dictionary record is
available using Smf110Record.haveDictionary() or simply concatenate all required dictionary records
ahead of the data records in the input data.

Specific fields are defined by name and type using entries from
com.blackhillsoftware.smf.cics.monitoring. Then Performance records are read from the SMF record,
and specific fields accessed using getField(...) methods or variations.

try (SmfRecordReader reader =

SmfRecordReader
.fromDD ("INPUT")
.include (110, Smfll0Record.SMFMNSTY)) // include only type 110 subtype 1 recor
{
for (SmfRecord record : reader) // read each record

{
Smfl100Record rl1ll0 = SmfllORecord.from(record);
if (rll0.haveDictionary())
{
for (PerformanceRecord perfdata :
r110.performanceRecords()) // process 0 or more PerformanceRecord s
{
String txName = perfdata.getField(Field.TRAN) ;
ZonedDateTime start = perfdata.getField(Field.START) ;
ZonedDateTime stop = perfdata.getField(Field.STOP) ;
double dispatch = perfdata.getFieldTimerSeconds (Field.USRDISPT) ;

//... process data

}
CICS Fields are defined in the com.blackhillsoftware.smf.cics.monitoring.fields.Field class so their
nickname can be used to access the data e.qg.
getField (Field.TRAN)
to get the transaction name.
Fields can also be accessed by ID, by explicitly defining your own Field:

ByteStringField transaction = ByteStringField.define ("DFHTASK", "CO001");

© 2023 Black Hill Software

22

EasySMF:JE Installation and User Guide

String txName = perfdata.getField(transaction);
Fields with a simple value e.g. type C byte string fields are accessed using the getField(...) methods.
CICS Clock fields contain multiple values so they also use multiple getField methods.

¢ getFieldTimer(...) and getFieldTimerSeconds(...) get the timer as a Duration and double value in
seconds respectively.

¢ getFieldFlags(...) gets the CICS clock flag bits.

¢ getFieldPeriodCount(...) gets the period count value from the CICS clock.

¢ getField(...) gets the entire CicsClock. You can then retrieve the components as required.

© 2023 Black Hill Software

SLF4J Message Logging 23

SLF4J Message Logging

Messages from EasySMF are written using Simple Logging Facade for Java (SLF4J).

SLF4J is a message logging framework for Java. It allows messages to be directed to various
locations without changing the source program. EasySMF:JE uses SLF4J to write various status
messages.

The slfdj-simple binding is included which directs EasySMF messages to standard error (stderr). Other
bindings are available to direct messages to other destinations, e.g. if the program stderr is not available
or not monitored. You may already have other Java programs using SLF4J with your own logging
standards.

See http://www.slIf4j.org/ to see what options are available.

© 2023 Black Hill Software

http://www.slf4j.org/

24

EasySMF:JE Installation and User Guide

Appendices

Appendix A - 3rd Party Licenses

The EasySMF:JE distribution includes some 3rd party software. License agreements are included here
where required.

SLF4J
Simple Logging Facade for Java (SLF4J)

Copyright (c) 2004-2023 QOS.ch

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Gson

Copyright 2008 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Apache Commons CLI

Apache Commons CLI
Copyright 2002-2023 The Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (https://www.apache.org/).

https://www.apache.org/licenses/LICENSE-2.0

© 2023 Black Hill Software

https://www.apache.org/)
https://www.apache.org/licenses/LICENSE-2.0

Index

Index
-1 -

1, 2 and 3 byte integer 4

-4 -

4 byte/32 bit unsigned integer 4

-8 -

8 byte/64 bit unsigned integer 4

-C -

CLASSPATH 7
Closeable 14

-D -

Data Types 4
Dates and Times 4

-E -

EasySMF:JE license key 7, 10
EASYSMFKEY 7,10
environment variable 7
EZSMFKEY 7

-F -

Floating point 4

Installation 7
Integers greater than 8 bytes 4
IvP 7

-J -

JCL procedures 7
JVMLDM80O 7

JZ0s 7

JZOS Batch Launcher 7
JZOS Toolkit 7

Linux 10
RDW 4, 15

record descriptor word 15
record descriptor words 4

-S -

SLF4J 7

SMF dump dataset 14
SmfRecordReader 4, 14, 15
Stream 15

-W -

Windows 10

25

© 2023 Black Hill Software

	Introduction
	Processing SMF Data with Java
	EasySMF:JE Concepts

	Installation on z/OS
	Installation on other platforms
	Creating your own reports
	EasySMF:JE Key
	Reading SMF data
	Reading SMF data on z/OS
	Reading SMF data on other platforms
	Reading SMF data from a stream
	Selecting Record Types for Processing

	EasySMF:JE Samples
	Working with SMF records
	Data Types
	SMF Record Notes
	CICS

	SLF4J Message Logging
	Appendices
	Appendix A - 3rd Party Licenses
	SLF4J
	Gson
	Apache Commons CLI

